Multi-walled Сarbon Nanotubes Penetrate into Plant Cells and Affect the Growth of Onobrychis arenaria Seedlings
نویسندگان
چکیده
Engineered nanoparticles (ENPs) are now being used in many sectors of industry; however, the impact of ENPs on the environment still requires further study, since their use, recycling, and accidental spill can result in the accumulation of nanoparticles in the atmosphere, soil, and water. Plants are an integral part of ecosystems; hence their interaction with ENPs is inevitable. It is important to understand the consequences of this interaction and assess its potential effects. The present research is focused on studying the effects of the industrial material Taunit, containing multi-walled carbon nanotubes (MWNTs), on plants, and testing of its ability to penetrate into plant cells and tissues. Taunit has been found to stimulate the growth of roots and stems and cause an increase in peroxidase activity inOnobrychis arenariaseedlings. Peroxidase activity increases with decreasing concentration of Taunit from 1,000 to 100 mg/l. MWNTs from Taunit were detected in the cells and tissues of seedling roots and leaves, implying the ability of MWNTs to penetrate into roots and accumulate there, as well as their ability to be transported into seedling leaves. Thus, the changes in the physiological parameters of plants are associated not only with MWNT adsorption on the root surface, as previously believed, but also with their penetration, uptake and accumulation in the plant cells and tissues.
منابع مشابه
Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations
The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of e...
متن کاملRetraction notice for: Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.
Carbon nanotubes (CNTs) were found to penetrate tomato seeds and affect their germination and growth rates. The germination was found to be dramatically higher for seeds that germinated on medium containing CNTs (10-40 mug/mL) compared to control. Analytical methods indicated that the CNTs are able to penetrate the thick seed coat and support water uptake inside seeds, a process which can affec...
متن کاملThe multi-walled carbon nanotubes induced anatomical and morphological changes in root and shoot of two cultivars of Okra (Hibiscus escolentus L.) seedlings
Carbon nanotubes (CNTs) are known to have many unique physical and chemical properties. Because of these features, they accelerate the germination process, root growth, and photosynthesis rate that can result in increased crop productivity. In the present study, the effects of 4 multi-walled carbon nanotubes (MWCNTs) levels including 0 (control), 50 (low concentration), 100 (moderate concentrat...
متن کاملNano Carbon Applications for Plant
Submit Manuscript | http://medcraveonline.com could be used as a nutrient carrier for macro and micro elements that may reduce their higher concentrations which are usually used. Carbon nanotubes applications in agriculture showed very promising results [4]. It takes an important role due to its competitive mechanical, electrical, thermal and chemical properties [3]. Single and multi-walled CNT...
متن کاملتعیین شاخصهای سم شناسی کربن نانوتیوب و کریزوتایل بر اساس سمیت سلولی در سلولهای اپیتلیال ریه انسان به صورت اینویترو
Background and aim: In this study the cytotoxicity to human epithelial lung cells of single-walled carbon nanotubes, multi-walled carbon nanotubes and chrysotile was compared based on the following cytotoxicity indices: no observable adverse effect concentration (NOAEC), inhibitory concentration 50 (IC50), and Total Lethal Concentration (TLC). Materials and Methods: Human epithelial lung cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011